276 research outputs found

    Differential Effects of Digoxin on Imiquimod-Induced Psoriasis-Like Skin Inflammation on the Ear and Back

    Get PDF

    Matrix Metalloproteinase 13 Is Induced in Fibroblasts in Polyomavirus Middle T Antigen-Driven Mammary Carcinoma without Influencing Tumor Progression

    Get PDF
    Matrix metalloproteinase (MMP) 13 (collagenase 3) is an extracellular matrix remodeling enzyme that is induced in myofibroblasts during the earliest invasive stages of human breast carcinoma, suggesting that it is involved in tumor progression. During progression of mammary carcinomas in the polyoma virus middle T oncogene mouse model (MMTV-PyMT), Mmp13 mRNA was strongly upregulated concurrently with the transition to invasive and metastatic carcinomas. As in human tumors, Mmp13 mRNA was found in myofibroblasts of invasive grade II and III carcinomas, but not in benign grade I and II mammary intraepithelial neoplasias. To determine if MMP13 plays a role in tumor progression, we crossed MMTV-PyMT mice with Mmp13 deficient mice. The absence of MMP13 did not influence tumor growth, vascularization, progression to more advanced tumor stages, or metastasis to the lungs, and the absence of MMP13 was not compensated for by expression of other MMPs or tissue inhibitor of metalloproteinases. However, an increased fraction of thin collagen fibrils was identified in MMTV-PyMT;Mmp13−/− compared to MMTV-PyMT;Mmp13+/+ tumors, showing that collagen metabolism was altered in the absence of MMP13. We conclude that the expression pattern of Mmp13 mRNA in myofibroblasts of invasive carcinomas in the MMTV-PyMT breast cancer model recapitulates the expression pattern observed in human breast cancer. Our results suggest that MMP13 is a marker of carcinoma-associated myofibroblasts of invasive carcinoma, even though it does not make a major contribution to tumor progression in the MMTV-PyMT breast cancer model

    Psychosocial patient perspectives following major lower-limb amputation due to vascular aetiology: a protocol for a systematic meta-aggregation study

    Get PDF
    INTRODUCTION: Persistent psychosocial problems in people with lower-limb amputation due to vascular aetiology indicate a great need for long-lasting holistic rehabilitation. An in-depth understanding of the psychosocial problems is essential for the guidance of health professionals in meeting and normalising patients' experiences and emotions. Furthermore, identifying the psychological problems may help develop effective rehabilitation and counselling programmes. This meta-aggregation study aims to explore the psychosocial perspectives of individuals who have undergone a major lower-limb amputation due to vascular aetiology during the post-discharge rehabilitation phase.METHODS AND ANALYSIS: A systematic meta-aggregation study will be performed to identify full-text, peer-reviewed journal articles reporting on patients' psychosocial perspectives on major lower-limb amputation due to vascular aetiology from post-discharge to several years afterward. The databases Embase, CINAHL Ultimate, APA PsycInfo, PubMed and Scopus will be searched with no limitations regarding the publication year. Studies that satisfy the eligibility criteria will be critically appraised using an acknowledged checklist and synthesised using the Joanna Briggs Institute three-phase approach for the synthesis of meta-aggregation studies. The GRADE-CERQual (Grading of Recommendations Assessment, Development and Evaluation- Confidence in Evidence from Reviews of Qualitative research) tool will be used to determine the level of confidence in the qualitative evidence, and the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) reporting guidelines will be followed throughout the review process.ETHICS AND DISSEMINATION: Ethical approval is not required for the study, as the review is built on pre-existing available data in the literature. Findings from the review will be disseminated through publication in a peer-review journal.PROSPERO REGISTRATION NUMBER: CRD42022377114.</p

    Simulation of electrochemical properties of naturally occurring quinones

    Get PDF
    This study was supported by grants from The Danish Research Council, Technology and Production (grant no. 7017-00167) and the Novo Nordisk Foundation (NNF18OC0034952).Quinones are produced in organisms and are utilized as electron transfer agents, pigments and in defence mechanisms. Furthermore, naturally occurring quinones can also be cytotoxins with antibacterial properties. These properties can be linked to their redox properties. Recent studies have also shown that quinones can be utilized in flow battery technology, though naturally occurring quinones have not yet been investigated. Here, we have analyzed the properties of 990 different quinones of various biological sources through a computation approach to determine their standard reduction potentials and aqueous solubility. The screening was performed using the PBE functional and the 6-31G** basis set, providing a distribution of reduction potentials of the naturally occurring quinones varying from − 1.4 V to 1.5 V vs. the standard hydrogen electrode. The solvation energy for each quinone, which indicates the solubility in aqueous solution, was calculated at the same level. A large distribution of solubilities was obtained, containing both molecules that show tendencies of good solubilities and molecules that do not. The solubilities are dependent on the nature of the side groups and the size of the molecules. Our study shows that the group containing the quinones of fungal origin, which is also the largest of the groups considered, has the largest antimicrobial and electrochemical potential, when considering the distribution of reduction potentials for the compounds.Publisher PDFPeer reviewe

    Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression:implications for atherosclerosis research

    Get PDF
    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE−/− mice, their M1/M2 phenotype, inflammatory status, and lipid metabolism signatures were compared. oxLDL accumulation was similar in PEMs and BMDMs. On protein expression level, BMDMs showed an M2-like CD206(high)CD11c(low) profile, while cholesterol loading led to enhanced CD11c expression and reduced MCP-1 secretion. In contrast, PEMs expressed low levels of CD206 and CD11c, and responded to cholesterol loading by increasing CD11c expression and MCP-1 secretion. mRNA expression of M1/M2 markers was higher in PEMS than BMDMs, while lipid metabolism genes were similarly expressed. Whole aorta flow cytometry showed an accumulation of M2-like CD206(high)CD11c(low) macrophages in advanced versus early atherosclerotic disease in ApoE−/− mice. In isolated lesions, mRNA levels of the M2 markers Socs2, CD206, Retnla, and IL4 were downregulated with increasing disease severity. Likewise, mRNA expression of lipid metabolism genes (SREBP2, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes

    Uremia does not affect neointima formation in mice

    Get PDF
    Atherosclerotic cardiovascular disease is a major complication of chronic kidney disease (CKD). CKD leads to uremia, which modulates the phenotype of aortic smooth muscle cells (SMCs). Phenotypic modulation of SMCs plays a key role in accelerating atherosclerosis. We investigated the hypothesis that uremia potentiates neointima formation in response to vascular injury in mice. Carotid wire injury was performed on C57BL/6 wt and apolipoprotein E knockout (Apoe−/−) mice two weeks after induction of uremia by 5/6 nephrectomy. Wire injury led to neointima formation and downregulation of genes encoding classical SMC markers (i.e., myocardin, α-smooth muscle actin, SM22-alpha, and smooth muscle myosin heavy chain) in both wt and Apoe−/− mice. Contrary to our expectations, uremia did not potentiate neointima formation, nor did it affect intimal lesion composition as judged from magnetic resonance imaging and histological analyses. Also, there was no effect of uremia on SMC marker gene expression in the injured carotid arteries, suggesting that there may be different effects of uremia on SMCs in different vascular beds. In conclusion, uremia does not accelerate neointima formation in response to wire injury of the carotid artery in mice.</p
    • …
    corecore